%E POSTER PRODUCED BY MAYFLOWER GMBH CONTACT OFFICE MUNICH OFFICE WURZBURG
Eg Agile high-performance Teams at Mayflower are well-known for that special and Munich, Mayflower is a recognized Web & IT service provider in the mail kontaki@mayflower.de Mannhardtstr. 6 Gneisenaustr. 10/11
E'E kind of software development, that delivers real value for our customers. Backed german-speaking market. Our expertise is driving international projects for web mayflower.de 80538 Miinchen 97074 Wiirzburg

by more than 460 years of experience at our business locations in Wurzburg customers like Sixt, Vaillant, Media-Saturn, DriveNow or MAN. tweet @mayflowerphp tel +49 89 242054 1177 tel +49 931 35965 1177

CONTEND BASED ON JOHN PAPA'S ANGULAR STYLE

Please visit github.com/johnpapa/angular-styleguide for more information on the original source.

NGULARJS

by Google

Single responsibility

controllerAs view syntax

Use the controllerAs syntax over the classic controller with $scope syntax.

Why2 Controllers are constructed, ,newed” up, and provide a single new in-
stance, and the controllerAs syntax is closer to that of a JavaScript constructor than
the classic $scope syntax.

Why?2 It promotes the use of binding to a ,dotted” object in the View
(e.g. customer.name instead of name), which is more confextual, eas-
ier to read, and avoids any reference issues that may occur without ,dotting”.

Whye Helps avoid using $parent calls in Views with nested controllers.

<!-- avoid -->

<div ng-controller="CustomerController">
{{ name }}

</div>

<!-- recommended -->

<div ng-controller=
"CustomerController as customer">
{{ customer.name }}

</div>

controllerAs controller syntax

Use the controllerAs syntax over the classic controller with $scope syntax. The
controllerAs syntax uses this inside controllers which gefs bound to $scope.

Whye controllerAs is syntactic sugar over $scope. You can sfill bind to the View
and still access $scope methods

Why2 Helps avoid the temptation of using $scope methods inside a controller
when it may otherwise be better to avoid them or move the method to a factory,
and reference them from the controller. Consider using $scope in a controller only
when needed. For example when publishing and subscribing events using $emit,
$broadcast, or $on consider moving these uses to a factory and invoke from the
controller.

/* avoid */

function CustomerController ($Sscope) {
Sscope.name = {};
Sscope.sendMessage = function() { };

/* recommended - but see next section */
function CustomerController () {
this.name = {};
this.sendMessage = function() { };

controllerAs with vm

Use a capture variable for this when using the controllerAs syntax. Choose a con-
sistent variable name such as vm, which stands for ViewModel.

Why?2 The this keyword is confextual and when used within a function inside a
controller may change its context. Capturing the context of this avoids encounter-
ing this problem.

/* avoid */

function CustomerController () {
this.name = {};
this.sendMessage = function() { };

/* recommended */
function CustomerController () ({

var vm = this;
vm.name = {};
vm.sendMessage = function() { };

Note: You can avoid any jshint warnings by placing the comment above the line
of code. However it is not needed when the function is named using UpperCas-
ing, as this convention means it is a constructor function, which is what a confroller
is in Angular.

/* jshint validthis: true */
var vm = this;

Note: When creating watches in a controller using controller as, you can watch
the vm. * member using the following syntax. (Create watches with caution as they
add more load to the digest cycle.)

<input ng-model="vm.title"/>

function SomeController ($Sscope, S$log) {
var vm = this;
vm.title = 'Some Title';

Sscope.Swatch('vm.title',

function (current, original) {
Slog.info('vm.title was %s', original);
S$log.info('vm.title is now %s', current);

)

Bindable members up top

Place bindable members af the top of the controller, alphabetized, and not spread
through the controller code.

Why? Placing bindable members at the top makes it easy to read and helps you
instantly identify which members of the controller can be bound and used in the
View.

Why? Sefting anonymous functions in-line can be easy, but when those functions
are more than 1 line of code they can reduce the readability. Defining the functions
below the bindable members (the functions will be hoisted) moves the implemen-
fation details down, keeps the bindable members up top, and makes it easier to
read.

/* avoid */
function SessionsController () {

var vm = this;
vin.gotoSession = function() {

i

vm.refresh = function() {

i

vm.search = function () {

i
vm.sessions = [];

vm.title = 'Sessions';

/* recommended */
function SessionsController () {
var vm = this;

vm.gotoSession = gotoSession;
vm.refresh = refresh;
vin.search = search;
vm.sessions = [];

vm.title = 'Sessions';

117177777777

function gotoSession () {

/* x/

function refresh () {

/* x/

function search () {
7% =)
}
Note: If the function is a 1 liner consider keeping it right up top, as long as read-
ability is not affected.

/* avoid */
function SessionsController (data) ({
var vm = this;

vm.gotoSession = gotoSession;
vm.refresh = function() {

/**

* lines

* @I

* code

* affects

* readability

%/
}i
vm.search = search;
vm.sessions = [];
vm.title = 'Sessions';

/* recommended */
function SessionsController (sessionDataService) {
var vm = this;

vin.gotoSession = gotoSession;
// 1 liner is OK

vm.refresh = sessionDataService.refresh;
vm.search = search;

vm.sessions = [];

vm.title = 'Sessions';

Function declarations
to hide implementation details

Use function declarations to hide implementation details. Keep your bindable
members up top. When you need to bind a function in a controller, point it to @
function declaration that appears later in the file. This is fied directly to the section
Bindable members up top. For more details see this post.

Why? Placing bindable members at the top makes it easy to read and helps you
instantly identify which members of the controller can be bound and used in the
View. (Same as above.)

Why? Placing the implementation details of a function later in the file moves that
complexity out of view so you can see the important stuff up top.

Why? Function declaration are hoisted so there are no concerns over using a func-
fion before it is defined (as there would be with function expressions).

Why?2 You never have fo worry with function declarations that moving var a be-
fore var b will break your code because a depends on b.

Why?2 Order is critical with function expressions

/* avoid using function expressions. */
function AvengersController (avengersService,
logger) {
var vm = this;
vm.avengers = [];
vm.title = 'Avengers';

var activate = function () {
return getAvengers () .then (function () {
logger.info ('Activated Avengers
View') ;

1) ;

var getAvengers = function() {
return avengersService.getAvengers ()

.then (function (data) {

vm.avengers = data;

return vm.avengers;

1) ;

vin.getAvengers = getAvengers;
activate () ;

Notfice that the important stuff is scaftered in the preceding example. In the ex-
ample below, nofice that the important stuff is up top. For example, the members
bound to the controller such as vm.avengers and vm.fitle. The implementation de-
tails are down below. This is just easier to read.

/*
* recommended:

* Using function declarations
* and bindable members up top.

*/

function AvengersController (avengersService,
logger) {
var vim = this;
vm.avengers = [];
vm.getAvengers = getAvengers;
vm.title = 'Avengers';

activate () ;

function activate () {
return getAvengers () .then (function () {
logger.info ('Activated Avengers

function getAvengers () {
return avengersService.getAvengers ()
.then (function (data) {
vm.avengers = data;
return vm.avengers;

1)

Keep controllers focused

Define a controller for a view, and fry not to reuse the controller for other views.
Instead, move reusable logic to factories and keep the controller simple and fo-
cused on its view.

Why?2 Reusing controllers with several views is britle and good end-to-end (e2¢)
fest coverage is required fo ensure stability across large applications.

Defer controller logic to services

Defer logic in a controller by delegating to services and factories.

Why? Llogic may be reused by multiple controllers when placed within a service
and exposed via a function.

Why? Logic in a service can more easily be isolated in a unit test, while the calling
logic in the confroller can be easily mocked.

Why?e Removes dependencies and hides implementation details from the con-
froller.

Why? Keeps the controller slim, trim, and focused.

/* avoid */

function OrderController ($Shttp, $gq, config,
userInfo) {
var vm = this;
vm.checkCredit = checkCredit;
vm.isCreditOk;
vm.total = 0;

function checkCredit () {

var settings = {};
// Get the credit service base URL from
// config

// Set credit service required headers
// Prepare URL query string or data
// object with request data
// Add user-identifying info so service gets
// the right credit limit for this user.
// Use JSONP for this browser if it doesn't
// support CORS
return $http.get (settings)
.then (function (data) {
// Unpack JSON data in the response
object to find maxRemainingAmount
vm.1isCreditOk =
vim.total <= maxRemainingAmount
1)
.catch (function (error) {
// Interpret error
// Cope w/ timeout? retry? try alternate
// service? Re-reject with appropriate
// error for a user to see

});

/* recommended */

function OrderController (creditService) {
var vm = this;
vm.checkCredit = checkCredit;
vm.isCreditOk;
vm.total = 0;

function checkCredit () {
return creditService.isOrderTotalOk (vm.total)
.then (function (isOk) { vm.isCreditOk = isOk;
})
.catch (showError) ;

b

Assigning controllers

When a controller must be paired with a view and either component may be re-
used by other controllers or views, define controllers along with their routes.

Note: If a view is loaded via another means besides a route, then use the ng-con-
troller="Avengers as vm" syntax.

Why?2 Pairing the controller in the route allows different routes fo invoke different
pairs of controllers and views. When controllers are assigned in the view using
ng-controller, that view is always associated with the same controller.

/* avoid
* when using with a route
* and dynamic pairing is desired

*/

// route-config.js
angular
.module ('app')
.config(confiqg) ;

function config($routeProvider) {
SrouteProvider
.when ('/avengers', {
templateUrl: 'avengers.html'

1)

<!-- avengers.html -->
<div ng-controller="AvengersController as vm">

</div>

/* recommended */
// route-config.js
angular
.module ('app')
.config(confiqg) ;

function config($routeProvider) {

SrouteProvider
.when ('/avengers', {
templateUrl: 'avengers.html',
controller: 'Avengers',
controllerAs: 'wvm'
1)
}
<!-- avengers.html -->
<div>
</div>

Limit 1 per file

Create one directive per file. Name the file for the directive.

Why2 ltis easy to mash all the directives in one file, but difficult to then break those
out so some are shared across apps, some across modules, some just for one
module

Whye One directive per file is easy to maintain.

Note: "Best Practice: Directives should clean up after themselves. You can use
element.on('$destroy’, ...) or scope.$on('$destroy’, ...) to run a clean-up function
when the directive is removed" ... from the Angular documentation.

/* avoid */

/* directives.js */

angular
.module ('app.widgets')

/* order directive that is specific to
the order module */
.directive ('orderCalendarRange',
orderCalendarRange)

/* sales directive that can be used
anywhere across the sales app */
.directive ('salesCustomerInfo',
salesCustomerInfo)

/* spinner directive that can be used
anywhere across apps */
.directive ('sharedSpinner', sharedSpinner);

function orderCalendarRange () {
/* implementation details */

function salesCustomerInfo () {
/* implementation details */

function sharedSpinner () {
/* implementation details */

/* recommended */

/* calendarRange.directive.js */

/*
* @desc order directive that is specific to
* the order module at a company named Acme
* @example <div acme-order-calendar-range></div>
*/
angular
.module ('sales.order"')
.directive ('acmeOrderCalendarRange',
orderCalendarRange) ;

function orderCalendarRange () {
/* implementation details */

/* recommended */

/* customerInfo.directive.js */

/*
* @desc sales directive that can be used anywhere
across the sales app at a company named Acme
* @Qexample <div acme-sales-customer—-info></div>
*/
angular

.module ('sales.widgets')

.directive ('acmeSalesCustomerInfo',

salesCustomerInfo) ;

function salesCustomerInfo () {
/* implementation details */

/* recommended */
/* spinner.directive.]js */

/*
* @desc spinner directive that can be used
* anywhere across apps at a company named Acme
* Qexample <div acme-shared-spinner></div>

*/

angular
.module ('shared.widgets"')
.directive ('acmeSharedSpinner',
sharedSpinner) ;

function sharedSpinner () {
/* implementation details */

Note: There are many naming options for directives, especially since they can be
used in narrow or wide scopes. Choose one that makes the directive and its file
name disfinct and clear. Some examples are below, but see the Naming section
for more recommendations.

Manipulate DOM in a directive

When manipulating the DOM directly, use a directive. If alternative ways can be
used such as using CSS to set styles or the animation services, Angular templating,
ngShow or ngHide, then use those instead. For example, if the directive simply
hides and shows, use ngHide/ngShow.

Why2 DOM manipulation can be difficult fo test, debug, and there are often better
ways (e.g. CSS, animations, templates)

Provide a unique directive prefix

Provide a short, unique and descriptive directive prefix such as acmeSalesCustom-
erlnfo which would be declared in HTML as acme-sales-customer-info.

Why? The unique short prefix identifies the directive's context and origin. For exam-
ple a prefix of cc- may indicate that the directive is part of a CodeCamper app
while acme- may indicate a directive for the Acme company.

Note: Avoid ng- as these are reserved for Angular directives. Research widely
used directives to avoid naming conflicts, such as ion- for the lonic Framework.

Restrict to elements and attributes

When creating a directive that makes sense as a stand-alone element, allow re-
strict E {custom element) and optionally restrict A (custom attribute). Generally, if it
could be its own control, E is appropriate. General guideline is allow EA but lean
towards implementing as an element when if's stand-alone and as an attribute
when it enhances ifs exising DOM element.

Why? It makes sense.

Why?2 While we can allow the directive to be used as a class, if the directive is truly
acfing as an element it makes more sense as an element or at least as an affribute.

Note: EA is the default for Angular 1.3 +

<!-- avoid -->
<div class="my-calendar-range"></div>

/* avoid */
angular
.module ('app.widgets')
.directive ('myCalendarRange’',
myCalendarRange) ;

function myCalendarRange () {

var directive = {
link: link,
templateUrl:
'/template/is/located/here.html"',
restrict: 'C'

}i

return directive;

function link(scope, element, attrs) {
J% =

<!-- recommended -->
<my-calendar-range></my-calendar-range>
<div my-calendar-range></div>

/* recommended */
angular
.module ('app.widgets"')
.directive ('myCalendarRange',
myCalendarRange) ;

function myCalendarRange () {

var directive = {
link: link,
templateUrl:
'/template/is/located/here.html’,
restrict: 'EA'

b

return directive;

function link (scope, element, attrs) {

/x */

Directives and controllerAs

Use controllerAs syntax with a directive to be consistent with using controllerAs
with view and controller pairings.

Why? It makes sense and it's not difficult.

Note: The directive below demonstrates some of the ways you can use scope
inside of link and directive controllers, using controllerAs.

Note: Regarding dependency injection, see Manually identify dependencies

Note: The directive's controller is outside the directive's closure. This style eliminates
issues where the injection gets created as unreachable code after a return.

<div my-example max="77"></div>

angular

.module ('app')

.directive ('myExample', myExample) ;
function myExample () {

var directive = {
restrict: 'EA',
templateUrl:
'app/feature/example.directive.html',
scope: |
max: '='

}I
link: linkFunc,
controller: ExampleController,
controllerAs: 'wvm',
bindToController: true

// because the scope is isolated

}i

return directive;
function linkFunc(scope, el, attr, ctrl) {

console.log ('LINK: scope.min = %$s ***
should be undefined', scope.min);
console.log ('LINK: scope.max = %S ***
should be undefined', scope.max);
console.log ('LINK: scope.vm.min = %s',
scope.vm.min) ;
console.log ('LINK: scope.vm.max = %s',

scope.vm.max) ;

ExampleController.$inject = ['Sscope'l;
function ExampleController ($scope) {
// Injecting S$scope Jjust for comparison

var vm = this;
vm.min = 3;
console.log ('CTRL: S$scope.vm.min = %s',
Sscope.vm.min) ;
console.log ('CTRL: S$scope.vm.max = %s',
Sscope.vm.max) ;
console.log ('CTRL: vm.min = %s', vm.min) ;
console.log ('CTRL: vm.max = %s', vm.max);
}
<!-- example.directive.html -->

<div>hello world</div>
<div>max={{vm.max}}<input ng-model="vm.max"/>
</div>

<div>min={{vm.min}}<input ng-model="vm.min"/>
</div>

Note: You can also name the controller when you inject it info the link function and
access directive atfributes as properties of the controller.

// Alternative to above example
function linkFunc(scope, el, attr, vm) {

console.log ('LINK: scope.min = %$s ***

should be undefined', scope.min);
console.log ('LINK: scope.max = %S ***

should be undefined', scope.max);
console.log ('LINK: vm.min = %s', vm.min);
console.log ('LINK: vm.max = %s', vm.max);

}

Use bindToController = frue when using confrollerAs syntax with a directive when
you want to bind the outer scope to the directive's controller's scope.

Why? It makes it easy to bind outer scope to the directive's controller scope.
Note: bindToController was infroduced in Angular 1.3.0.

<div my-example max="77"></div>
angular
.module ('app')
.directive ('myExample', myExample) ;
function myExample () {
var directive = {
restrict: 'EA',
templateUrl:
'app/feature/example.directive.html',
scope: {
max: '='
}I
controller: ExampleController,
controllerAs: 'wvm',
bindToController: true
bi

return directive;

function ExampleController () {
var vm = this;
vm.min = 3;
console.log ('CTRL: vm.min =
console.log ('CTRL: vm.max

}

<!-- example.directive.html -->

<div>hello world</div>

<div>max={{vm.max} }<input ng-model="vm.max"/>
</div>

<div>min={{vm.min} }<input ng-model="vm.min"/>
</div>

Rule of 1

Define 1 component per file.

The following example defines the app module and its dependencies, defines a
controller, and defines a factory all in the same file.

/* avoid */

angular
.module ('app', ['ngRoute'l])
.controller ('SomeController', SomeController)
.factory ('someFactory', someFactory):;

function SomeController () { }

function someFactory () { }

The same components are now separated into their own files.

/* recommended */
// app.module.js
angular
.module('app', ['ngRoute']);

/* recommended */
// someController.js
angular
.module ('app')
.controller ('SomeController',
SomeController) ;

function SomeController () { }

/* recommended */

// someFactory.js

angular
.module ('app')
.factory('someFactory', someFactory);

function someFactory () { }

Need support for your
Angular)S demands?

Angular)S Development
We provide first class agile development based on Angular and Nodejs.

Angular)$ Training

Our training combines the knowledge of our well known conference speakers
with real life knowhow from man years of practical angular development. We
go beyond full frontal talks and offer coding dojos, pair programming and code
reviews with the team to train your team hands on using your own project.

Angularl$ Consulting
We provide fast hands-on problem solution for your Angular development. Per-
formance, quality, security — ask us

mayflower.de
mail kontaki@mayflower.de

Singletons

Services are instantiated with the new keyword, use this for public methods and
variables. Since these are so similar to factories, use a factory instead for consis-
fency

Note: All Angular services are singletons. This means that there is only one in-
stance of a given service per injector.

// service
angular
.module ('app')
.service ('logger', logger);

function logger () {
this.logError = function (msg) {
J% =)
i
}
// factory
angular

.module ('app')
.factory('logger', logger):;

function logger () {
return {
logError: function (msg) {
J% =)

Many small, self contained modules

Create small modules that encapsulate one responsibility.

Why2 Modular applications make it easy to plug and go as they allow the devel-
opment teams to build vertical slices of the applications and roll out incrementally
This means we can plug in new features as we develop them.

Create an app module

Create an application root module whose role is pull together all of the modules
and features of your application. Name this for your application

Why?2 Angular encourages modularity and separation patterns. Creafing an ap-
plication root module whose role is fo fie your other modules together provides a
very straightforward way fo add or remove modules from your application.

Keep the app module thin

Only put logic for pulling together the app in the application module. Lleave fea-
tures in their own modules.

Why?2 Adding additional roles to the application roof to gef remote data, display
views, or other logic not related to pulling the app together muddies the app
module and make both sets of features harder to reuse or turn off.

Why?2 The app module becomes a manifest that describes which modules help
define the application

Feature areas are modules

Create modules that represent feature areas, such as layout, reusable and shared
services, dashboards, and app specific features (eg customers, admin, sales).

Why? Self contained modules can be added to the application with litfle or no
friction.

Why? Sprints or iterations can focus on feature areas and turn them on at the end
of the sprint or iteration.

Why? Separating feature areas info modules makes it easier to test the modules
in isolation and reuse code

Reusable blocks are modules

Create modules that represent reusable application blocks for common services
such as exception handling, logging, diagnostics, security, and local data stash-

ing.

Why? These types of features are needed in many applications, so by keeping
them separated in their own modules they can be application generic and be
reused across applications.

Module dependencies

The application root module depends on the app specific feature modules and
any shared or reusable modules.

Why? The main app module contains a quickly identifiable manifest of the appli-
cation's features.

Why?2 Each feature area contains a manifest of what it depends on, so it can be
pulled in as a dependency in other applications and still work.

Why?2 Intra-App features such as shared data services become easy to locate
and share from within app.core (choose your favorite name for this module).

Note: This is a strategy for consistency. There are many good options here.
Choose one that is consistent, follows Angular's dependency rules, and is easy
fo maintain and scale.

Our structures vary slightly between projects but they all follow these guidelines
for structure and modularity. The implementation may vary depending on the fea-
tures and the team. In other words, don't get hung up on an exact like-for-like
structure but do justify your structure using consistency, maintainability, and effi-
ciency inmind.

In a small app, you can also consider putting all the shared dependencies in the
app module where the feature modules have no direct dependencies. This makes
it easier to maintain the smaller application, but makes it harder to reuse modules
outside of this application.

Avoid naming collisions

Use unique naming conventions with separators for sub-modules.

Why?2 Unique names help avoid module name collisions. Separators help de-
fine modules and their submodule hierarchy. For example app may be your root
module while app.dashboard and app.users may be modules that are used as
dependencies of app

Definitions (aka setters)

Declare modules without a variable using the setter syntax. With 1 component
per file, there is rarely a need to introduce a variable for the module.

/* avoid */
var app = angular.module('app', [
'ngAnimate’,
'ngRoute’',
'app.shared',
'app.dashboard’
1)

Instead use the simple setter synfax.

/* recommended */
angular
.module('app', [
'ngAnimate’,
'ngRoute’',
'app.shared',
'app.dashboard’
1)

Getters

When using a module, avoid using a variable and instead use chaining with the
getter syntax. This produces more readable code and avoids variable collisions
or leaks.

/* avoid */
var app = angular.module('app'):
app.controller ('SomeController', SomeController);

function SomeController () { }

/* recommended */
angular
.module ('app')
.controller ('SomeController',
SomeController) ;

function SomeController () { }

Setting vs. getting

Only set once and get for all other instances. A module should only be created
once, then refrieved from that point and after.

/* recommended */
// to set a module
angular.module ('app', [1):

// to get a module
angular.module ('app') ;

Named vs. anonymous functions

Use named functions instead of passing an anonymous function in as a callback.

Why? This produces more readable code, is much easier to debug, and reduces
the amount of nested callback code.

/* avoid */
angular
.module ('app')
.controller ('DashboardController', function() {

})
.factory('logger', function() { })-

/* recommended */
// dashboard.]js
angular
.module ('app')
.controller ('DashboardController',
DashboardController) ;

function DashboardController () { }
// logger.js
angular
.module ('app"')
.factory('logger', logger);

function logger () { }

Single responsibility

Factories should have a single responsibility, that is encapsulated by its context.
Once a factory begins to exceed that singular purpose, a new factory should be
created

Singletons

Factories are singlefons and return an object that contains the members of the
service. Note: All Angular services are singletons.

Accessible members up top

Expose the callable members of the service (its inferface) at the top, using a tech-
nique derived from the Revealing Module Pattern.

Why?2 Placing the callable members af the top makes it easy to read and helps
you instantly identify which members of the service can be called and must be unit
tested (and /or mocked).

Why2 This is especially helpful when the file gets longer as it helps avoid the need
to scroll to see what is exposed.

Whye Setfing functions as you go can be easy, but when those functions are more
than 1 line of code they can reduce the readability and cause more scrolling.
Defining the callable interface via the returned service moves the implementation
details down, keeps the callable interface up top, and makes it easier to read

/* avoid */
function dataService () {
var someValue = '';
function save () {
7 =y
}i
function validate () {
7 =y
}i
return
save: save,
someValue: someValue,
validate: validate
}i

/* recommended */
function dataService () {
var someValue = '';
var service = {
save: save,
someValue: someValue,
validate: validate
|

return service;

/111177777177

function save () {
J% =)

}i

function validate () {
J% =)

}i

This way bindings are mirrored across the host object, primitive values cannot
update alone using the revealing module pattern.

Function declarations
to hide implementation details

Use function declarations to hide implementation details. Keep your accessible
members of the factory up top. Point those to function declarations that appears
later in the file.

Why? Placing accessible members af the fop makes it easy o read and helps you
instantly identify which functions of the factory you can access externally.

Why?2 Placing the implementation details of a function later in the file moves that
complexity out of view so you can see the important stuff up top.

Why?2 Function declaration are hoisted so there are no concerns over using a func-
tion before it is defined (as there would be with function expressions).

Why2 You never have to worry with function declarations that moving var a before
var b will break your code because a depends on b.

Whye Order is crifical with function expressions

/* avoid using function expressions */
function dataservice ($Shttp, $location, $qg,
exception, logger) {
var isPrimed = false;

var primePromise;

var getAvengers = function() {
// implementation details go here

var getAvengerCount = function() {
// implementation details go here

}:

var getAvengersCast = function() {
// implementation details go here

}:

var prime = function () {
// implementation details go here

}:

var ready = function (nextPromises) {
// implementation details go here

}:

var service = {
getAvengersCast: getAvengersCast,
getAvengerCount: getAvengerCount,
getAvengers: getAvengers,
ready: ready

}:

return service;

/*
* recommended

* Using function declarations

* and accessible members up top.

*/

function dataservice (Shttp, S$location, $qg,
exception, logger) {
var isPrimed = false;
var primePromise;

var service = {
getAvengersCast: getAvengersCast,
getAvengerCount: getAvengerCount,
getAvengers: getAvengers,
ready: ready

}i

return service;
117177777777

function getAvengers () {

// implementation details go here

function getAvengerCount () {
// implementation details go here

function getAvengersCast () {
// implementation details go here

function prime () {
// implementation details go here

function ready (nextPromises) {
// implementation details go here

Client-side routing is important for creating a navigation flow between views and
composing views that are made of many smaller templates and directives.

Use the AngularUl router for client-side routing.

Why?e Ul router offers all the features of the Angular router plus a few additional
ones including nested routes and stafes.

Why? The syntax is quite similar to the Angular router and is easy to migrate to
Ul router.

Note: You can use a provider such as the routerHelperProvider shown below to
help configure states across files, during the run phase.

// customers.routes.]js
angular
.module ('app.customers"')
.run (appRun) ;

/* @ngInject */
function appRun (routerHelper) ({
routerHelper.configureStates (getStates()) ;

function getStates () {
return [
{
state: 'customer',
config: {
abstract: true,

template: '<ui-view
class="shuffle-animation"/>"',
url: '/customer'

17

// routerHelperProvider.js
angular
.module ('"blocks.router')
.provider ('routerHelper',
routerHelperProvider) ;

routerHelperProvider.$inject =
['SlocationProvider', 'S$stateProvider',
'SurlRouterProvider'];

/* @ngInject */
function routerHelperProvider ($SlocationProvider,
SstateProvider, S$SurlRouterProvider) {
/* jshint validthis:true */
this.S$get = RouterHelper;

SlocationProvider.html5Mode (true) ;

RouterHelper.S$inject = ['S$Sstate'];

/* @nglInject */

function RouterHelper ($Sstate) {
var hasOtherwise = false;

var service = {
configureStates: configureStates,
getStates: getStates

}i

return service;

L1177 777777777
function configureStates (states,
otherwisePath) {
states.forEach (function (state) {
SstateProvider.state (state.state,
state.confiqg);
});
if (otherwisePath && !'hasOtherwise) {
hasOtherwise = true;
SurlRouterProvider.otherwise (
otherwisePath) ;

}
function getStates () {
return S$state.get();

Define routes for views in the module where they exist. Each module should con-
tain the routes for the views in the module.

Why?2 Each module should be able to stand on its own.

Why2 When removing a module or adding a module, the app will only contain
routes that point to exisfing views.

Whye This makes it easy to enable or disable portions of an application without
concern over orphaned roufes.

Naming guidelines

Use consistent names for all components following a pattern that describes the
component's feature then its type. Our preferred pattern is feature.type.js. There
are 2 names for most asses:

e The file name (avengers.controller.js)
* The registered component name with Angular (AvengersController)

Why?2 Naming conventions help provide a consistent way to find content at @
glance. Consistency within the project is vital. Consistency with a team is import-
ant. Consistency across a company provides fremendous efficiency.

Why? The naming conventions should simply help you find your code faster and
make it easier to understand.

Feature file names

Use consistent names for all components following a pattern that describes the
component's feature then its type. Our recommended pattern is feature.type.js.

Why? Provides a consistent way to quickly identify components. Thus provides
pattern matching for any automated tasks.

/* recommended */

// controllers
avengers.controller.js
avengers.controller.spec.js

// services/factories
logger.service.js
logger.service.spec.js

// constants
constants.js

// module definition
avengers.module.js

// routes
avengers.routes.js
avengers.routes.spec.js

// configuration
avengers.config.js

// directives
avenger-profile.directive.js
avenger-profile.directive.spec.js

Note: Another common convention is naming controller files without the word
controller in the file name such as avengers.s instead of avengers.controller.s
All other conventions still hold using a suffix of the type. Controllers are the most
common type of component so this just saves typing and is still easily identifiable.

/* recommended */
// Controllers
avengers.js
avengers.spec.js

Test file names

Name test specifications similar to the component they fest with a suffix of spec.
This will help to quickly identify components and provides pattern matching for
karma or other tesf runners.

/* recommended */
avengers.controller.spec.js
logger.service.spec.js
avengers.routes.spec.js
avenger-profile.directive.spec.js

Controller names

Use consistent names for all controllers named after their feature. Use Upper-
CamelCase for controllers, as they are constructors.

Why? Provides a consistent way to quickly identify and reference controllers.

Why?2 UpperCamelCase is conventional for identifying object that can be instan-
fiated using a constructor.

/* recommended */
// avengers.controller.js
angular
.module
.controller ('HeroAvengersController',
HeroAvengersController) ;

function HeroAvengersController () { }

Controller name suffix

Append the controller name with the suffix Controller. This behaviour is more com-
monly used and more explicitly descripfive.

/* recommended */
// avengers.controller.js
angular
.module
.controller ('AvengersController', AvengersCon-
troller);
function AvengersController() { }

Factory and service names

Use consistent names for all factories and services named after their feature. Use
camel-casing for services and factories. Avoid prefixing factories and services
with §. Only suffix service and factories with Service when it is not clear what they
are (i.e. when they are nouns). This provides a consistent way to quickly identify
and reference factories.

Whye Avoids name collisions with built-in factories and services that use the $
prefix.

Whye Clear service names such as logger do not require a suffix.

/* recommended */
// logger.service.]js
angular
.module
.factory('logger', logger)
function logger () { }

/* recommended */
// credit.service.js
angular
.module
.factory('creditService', creditService);
function creditService() { }

// customer.service.js
angular

.module

.service ('customerService', customerService);
function customerService() { }

Directive component names

Use consistent names for all directives using camel-case. Use a short prefix to
describe the area that the directives belong (some example are company prefix
or project prefix). This provides a consistent way to quickly identify and reference
components.

/* recommended */
// avenger-profile.directive.]s
angular
.module
.directive ('xxAvengerProfile',
xxAvengerProfile) ;

// usage 1s <xx-avenger-profile>
// </xx-avenger-profile>
function xxAvengerProfile() { }

Modules

When there are multiple modules, the main module file is named app.module.js
while other dependent modules are named after what they represent. Example: an
admin module is named admin.module.js. The respective registered module names
would be app and admin. This provides consistency for multiple module apps, and
for expanding to large applications. And it's an easy way to use task automation to
load all module definitions first, then all other angular files (for bundling).

Configuration

Separate configuration for a module into its own file named after the module.
A configuration file for the main app module is named app.config.js (or simply
config.js). A configuration for a module named admin.module.js is named admin.
config.js. This separates configuration from module definition, components, and
acfive code and provides an idenfifiable place fo set configuration for a module.

Routes

Separate route configurafion into its own file. Examples might be app.route.s for
the main module and admin.route.js for the admin module. Even in smaller apps we
prefer this separation from the rest of the configuration.

